请展开查看知识点列表
如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.
①求证:BD⊥CF;
②当AB=2,AD=3 时,求线段DH的长.
如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.
两个全等的三角尺重叠放在△ACB的位置,将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,AB与CE相交于点F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,则CF=cm.
如图1,已知开口向下的抛物线y1=ax2﹣2ax+1过点A(m,1),与y轴交于点C,顶点为B,将抛物线y1绕点C旋转180°后得到抛物线y2 , 点A,B的对应点分别为点D,E.
(1)请在图中作出一个格点△AMN,使△AMN与△ABC相似,并将△AMN绕点A顺时针旋转90°,得到△AEF,使点E与点M对应,请在图中作出△AEF;
(2)请以AF为边作出格点△AFD,使△AFD与△ABC全等.
进入组卷